

PRODUCT SPECIFICATION XCell LR6 Performance

1. Scope:

This specification is applicable to XCell alkaline cell, LR6 Performance (Mercury & Cadmium & Lead Free) distributed by energy inside GmbH.

2. Law & Regulation Compliances:

This product complies with EU's battery directive (2013/56/EU).

Packaging materials comply with EU's directive on packaging materials and waste (94/62/EC)

3. General:

3.1 Type designation

IEC/ JIS	LR6
ANSI	15A
Common	AA

- 3.2 Chemical system: Zn/KOH-H₂O/MnO₂
- 3.3 Nominal voltage: 1.5 V
- 3.4 Weight: Approximate 23g
- 3.5 Dimension (mm)

The dimensions shall be in accordance with the below figures both prior to and after service output test. Measuring equipment shall be with an accuracy ± 0.05 mm at least.

/	min	max
Φ	13.9	14.4
А	49.9	50.4
С	7.0	-
F	-	5.5
G	1.0	-

3.6 Capacity: Approximate 2900mAh (10mA, 24h/d, 20°C, e.v.= 0.8V)

3.7 Operation temperature: -18℃~50℃Recommend storage temperature: Not exceed 30℃

3.8 Heavy Metal Contents: Hg \leq 1 ppm, Cd \leq 20ppm, Pb \leq 40ppm

energy inside GmbH • Ludwig-Elsbett-Straße 8 • 97616 Salz • Germany

4. Appearance

The battery visually inspected by unaided eye 30cm away from battery. The battery shall be free from dents, scratch, rust and extruded internal compounds, such as sealing compounds and etc, and serious displacement of artwork. Appearance defects shall not be observed that may adversely affect actual use or performance of batteries.

5. Electrical Characteristics

Unless otherwise stated, all measurements are to be performed at a **<u>Standard Environment</u>** of

20 ± 2°C 55 ± 20% RH.

All samples are normalized for 8 hours at least at the above environment prior to measurement. The digital voltmeter (DCM) is with the precision of 1mV (internal resistance not less than 1 Megohm). The load resistance of the total circuit is accurate within $\pm 0.5\%$ of the specified value.

/		OCV(V)	CCV(V)	S.C.(A) (reference)		
Initial	Min	Min 1.57		7.5		
Initia	Normal	1.60	1.45	9.0		
Stored 1 year	Min	1.55	1.37	5.5		
Stored i year	Normal	1.57	1.40	7.0		

5.1 Open circuit voltage and closed circuit voltage (Load resistance 3.9Ω , 0.3S)

5.2 Service output

Lo	bad	10Ω	1000mA	1.5w/ 0.65w	1000 mA	3.3Ω	250mA	3.9Ω	100mA	24Ω	43Ω	3.9Ω	50mA
Test	mode	24h/d	24h/d	2s/28s 5min/h	10s/m 1h/d	4m/h 8h/d	1h/d	1h/d	1h/d	15s/m 8h/d	4h/d	4m/h 8h/d	1h/8h 24h/d
End voltage		0.9V	0.9V	1.05V	0.9V	0.9V	0.9V	0.8V	0.9V	1.0V	0.9V	0.9V	1.0 V
U	nit	h	m	pulse	pulse	m	h	h	h	h	h	m	h
Applicat	ations	Reference	Reference	Digital still camera	Photo flash	Portable lighting	CD/ Electronic games	Motor/ toy	Digital audio	Remote control	Radio/ Clock	Portable lighting	Radio /Clock/ Remote Control
Initial	MAD	18.5	38.0	55	380	300	7.0	7.0	21.0	42.0	89.0	380	43
mua	Normal	19.5	50.0	70	450	320	7.8	7.5	22.5	45.0	91.5	400	46
Stored	MAD	18.2	30.0	45	300	280	6.7	6.7	20.5	41.0	87.0	360	41
1 year	Normal	18.8	40.0	60	360	300	7.2	7.2	21.5	43.0	89.0	380	44

m: minute h: hour d: day

Remark: 1) The initial discharge test shall commence within 30 days of manufacture. During stored period, the cells shall be stored under 20±2°C, RH 55±20% conditions.

energy inside GmbH • Ludwig-Elsbett-Straße 8 • 97616 Salz • Germany

- 2) Lot release service output test is conducted by 10Ω continuous discharging to 0.9volts
 - The batteries shall not leak during the service life test before the end voltage reached.
- 3) MAD: minimum average duration--our guarantee discharge value.
- 4)Normal: normal data, it's our normal daily value, battereis dicharge value are on this as base to be upper or lower.

6. Leakage Resistance

6.1 Over discharge leakage test

Test conditions: $20\pm2^{\circ}C$ & RH 55±20%, 10Ω continuous discharge 48h. Number of test samples: 9 batteries Requirement: No visible leakage; No explosion.

6.2 High temperature leakage test

Test conditions: store 20 days under 60±2°C, then store 4~24h under standard environment. Number of test samples: 24 batteries Requirement: No visible leakage; No explosion.

7. Security Characteristics

7.1 User Drop Test

This test simulates the situation when a battery is accidentally dropped.

Test conditions: Undischarged test batteries shall be dropped from a height of 1 m onto a concrete surface. Each test battery shall be dropped six times, twice in each of the three axes. The test batteries shall be stored for 1 h afterwards.

Number of test sets: 5 batteries

Requirement: No fire, No explosion.

7.2 Short-circuit explosion-proof characteristics

This test simulates an external short circuit of a battery during daily handling of batteries.

Test conditions: Positive and negative terminals of an undischarged battery shall be connected directly. The circuit shall be completed for 24 h or until the battery case temperature has returned to ambient. The resistance of the inter-connecting circuitry shall not exceed 0,1 Ω .

Number of test samples: 5 batteries Requirement: No fire or explosion; Leakage is allowable.

7.3 Incorrect installation

This test simulates incorrect installation of a battery in a series application.

Test conditions: 4 undischarged batteries are used per test. 3 batteries are placed correctly inseries; the 4th battery is reversed with respect to polarity. The circuit is maintained until venting occurs or the reversed battery temperature has returned to ambient.

Number of test sets: 5 (20 batteries) Requirement: No fire or explosion; Leakage is allowable.

8. Expiry Date:

> 5 Years

energy inside GmbH • Ludwig-Elsbett-Straße 8 • 97616 Salz • Germany

9. Component / Information of Ingredients

MATERIALS	APPROXIMATE PERCENT OF TOTAL WEIGHT (%)	CAS NO.	MATERIALS	APPROXIMATE PERCENT OF TOTAL WEIGHT (%)	CAS NO.
Manganese Dioxide (MnO2)	~40.5 1313-13-6		Brass	~2.3	12597-71-6
Zinc Powder (Zn)	~18.2	7440-66-6	Fe	~15.5	7439-89-6
Water (H2O)	~11.2	7732-18-5	Ni-plating	~0.3	7440-02-0
Potassium Hydroxide (KOH)	~6.3	1310-58-3	Bi	~0.005	7440-69-9
Carbon	~2.9	7782-42-5	In	~0.005	7440-74-6

Chemical Nature: Alkaline zinc-manganese dioxide batteries

Chart 1. Discharge diagram

